翻訳と辞書
Words near each other
・ Deanshanger Athletic F.C.
・ Deanston
・ Deanston distillery
・ Deansville, Wisconsin
・ DeAntoine Beasley
・ Deantoni Parks
・ Deanville
・ Deanville, Texas
・ Deanville, West Virginia
・ Deanwell
・ Deanwood
・ Deanwood station
・ Deanwright, Texas
・ DEAP
・ DEAP (disambiguation)
DEAP (software)
・ Deap Vally
・ Deapara
・ Dear
・ Dear (album)
・ Dear (manga)
・ Dear (Mika Nakashima song)
・ Dear (surname)
・ Dear (Vivid song)
・ Dear 23
・ Dear A&T
・ Dear Abby
・ Dear Agony
・ Dear Alice
・ Dear America


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

DEAP (software) : ウィキペディア英語版
DEAP (software)

Distributed Evolutionary Algorithms in Python (DEAP) is an evolutionary computation framework for rapid prototyping and testing of ideas
.〔
〕〔

It incorporates the data structures and tools required to implement most common evolutionary computation techniques such as genetic algorithm, genetic programming, evolution strategies, particle swarm optimization, differential evolution and estimation of distribution algorithm. It is developed at Université Laval since 2009.
== Example ==
The following code gives a quick overview how the Onemax problem optimization with genetic algorithm can be implemented with DEAP.

import array, random
from deap import creator, base, tools, algorithms
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", array.array, typecode='b', fitness=creator.FitnessMax)
toolbox = base.Toolbox()
toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, 100)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
evalOneMax = lambda individual: (sum(individual),)
toolbox.register("evaluate", evalOneMax)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)
population = toolbox.population(n=300)
NGEN=40
for gen in range(NGEN):
offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.1)
fits = toolbox.map(toolbox.evaluate, offspring)
for fit, ind in zip(fits, offspring):
ind.fitness.values = fit
population = offspring


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「DEAP (software)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.